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Abstract. Suppose magnitude estimates on successive trials preserve the ratio of random internal 
representations of the corresponding signals. Then the mean response generally exhibits drift over 
trials; sequential dependencies usually exist in which case the mean response ratio is not a function of 
intensity ratio; however, a modified function is if the mean representation is a power function of 
intensity. Relevant loudness data are cited. The special timing representation is wrong if the sample 
size is just a function of the signal, but is viable if it is one of two sizes depending on the size of the 
intensity ratio to the preceding signal. This attention hypothesis is an analogue for intensity of the 
critical-band notion for frequency. 

When using magnitude estimation data in an attempt to infer the underlying psycho- 
physical function, what estimated function should we plot? As we show, the answer is 
rather more subtle than it first seems. 

Until recently the consensus was to follow Stevens' original approach, namely, to 
plot some central tendency of the responses -either mean, median, geometric mean, 
or some mixture of these -against some physical measure (usually additive) of the 
signal variable. Indeed, if one collects but two observations at each signal level from 
each observer, little else is possible. If, however, one decides to approach magnitude 
estimation much like the rest of psychophysics - using well practiced observers, 
collecting many observations at each of many signal levels, and, perhaps, studying 
more of the response distribution than just its central tendency - then other options 
become available. In particular, response ratios are a serious possibility. 

Three motives underlie the collection of large samples of response ratios. First, 
magnitude estimation instructions to observers have come, over the years, to be 
standardized in a way that ( i )  does not assign a standard response to any particular 
signal and (ii) urges them to reflect in their responses the subjective ratio of signals. 
If we take our own instructions seriously, then surely it is response ratios, not the 
responses themselves, that matter, and so perhaps we should study them. This point 
was made by Krantz (1972) in the context of algebraic models for cross-modality 
matching, by Marley (1972) in his internal state probabilistic model, and by Ward 
(1973) in analyzing sequential dependencies. The reason Stevens never plotted response 
ratios was, presumably, because in his view the central tendency of the responses is a 
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power function of signal level. The ratio of central tendencies is then the same power 
function of the corresponding signal ratio. Therefore, it really does not matter which 
function one plots, and the former is both simpler and requires fewer data. As we will 
see below, this argument glides over some complications in at least one quite general 
and moderately plausible model for the response behavior. If, indeed, we elect to study 
response ratios, then since N  signals yield N ( N -  1)/2 unordered pairs of successive 
signals, we will need many more responses to each signal than we usually collect in 
order to maintain the same quality of the estimates. An increase in sample size of 
( N -  1)/2 is needed just to estimate the mean response ratios, and unless we find a way 
to collapse the data over signal pairs the problem is much more severe when we wish 
to study the entire distribution of response ratios. 

A second motive for attending to response ratios arises from one account of the 
existence, in both absolute judgment and magnitude estimation data, of strong sequen- 
tial effects due to the preceding signal and much weaker effects due to earlier ones 
(Cross, 1973; Garner, 1953; Holland & Lockhead, 1968; Ward, 1972, 1973; and Ward 
& Lockhead, 1970, 1971). One suggestion is that they arise from the indirect effect of 
the observer using the preceding signal and his response to it as the standard against 
which to compare the present signal. We explore below one version of this hypothesis. 

A third motive is an interest in the form of the distribution of response ratios. This 
arises from the possibility that these distributions contain useful information about the 
underlying representations of the signals and the decision mechanism that generates 
the responses. Of course, Stevens (1957, 1959, 1961a, b, 1971) held the view that 
variability in magnitude estimates is uninformative noise, or at best a second-order 
phenomenon correlated with the central tendency. As such, it is no more capable of 
informing us about the underlying perceptual process than the noisiness of a voltmeter 
is informative about either the voltage being measured or the working of the meter 
itself. When the variability is small, this position is probably sound; but in magnitude 
estimation it is not small, either between individuals or for repeated observations on 
the same individual. An alternative view holds that this variability reflects something 
basic about the perceptual process itself. If so, then we need accurate estimates of these 
distributions. 

The Response Ratio Hypothesis 

Magnitude estimation instructions seem to make sense only if the stimulus attribute 
causes an internal change that can be represented by a number, and these responses 
can be chosen so as to maintain (at least some) ratios of these representations. Further, 
since these responses, like those in the rest of psychophysics, are variable, it seems 
plausible for the representation actually to be a random variable, with some unknown 
probability distribution that is a function of the signal presented. To be more specific, 
let S, be a random variable representing the signal presented on trial n - either a 
numbering of the signals, e.g., 1,2, ..., or a physical measure of the attribute being 
varied, e.g., 20, 30, 40, ... dB, - and let R, be the number (a random variable) emitted 
by the observer. Both of these RVs are observables, with the distribution of the former 
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under the experimenter's control. In addition, we postulate the existence of an internal 
representation X ( s )  when signals is presented; note that we assume X does not depend 
directly on the trial number, n. 

The first hypothesis that comes to mind, the one suggested by Ward (1973), is that 
the observer uses his representation and response on the preceding trial as a standard 
against which to generate the current response from the current representation, i.e., 
for all trials n, 

This model is, at best, a first approximation since by induction we see that 

So, in effect, given the first representation and response, R, is uniquely determined by 
the present representation, and no sequential dependencies are predicted. The data 
showing their existence are overwhelmingly clear. 

The failure of this simplest model leads one to consider slightly more complicated 
alternatives. One idea is that an internal representation of a signal is destroyed when 
it is used to generate a response. Put another way, a representation of a signal can be 
stored, but once it is removed from memory to generate a response it is lost. If so and if 
representations from successive trials are used to generate the responses, then it is neces- 
sary to assume that, when signal s  is presented, two independent representations, 
X ( s )  and X* ( s ) ,  arise. We do not assume that the distributions of X and X* are neces- 
sarily the same. Presumably the quality of these representations is poorer in some 
sense than when only one is needed as, say, in detection and discrimination experi- 
ments. The fact that peripheral neural representations of visual and auditory signals 
are encoded on a large number of parallel fibers means that it would not be difficult for 
the nervous system to use one set for X and another for X*. Given these two inde- 
pendent representations, the response ratio hypothesis takes the form 

This hypothesis has been studied by Marley (1973) (with C =  1 and under strong 
restrictions on the distributions of X and X*)  and by Luce and Green (1974). We 
summarize here the main conclusions of the latter paper. First, we make the following 
weak assumptions about the distribution functions of X and X*:  

(i) F(s )=  E[X* ( s ) ]  exists for all signals s .  
(ii) F* ( s ) =  E [ l / X *  ( s ) ]  exists for all signals s .  
(iii) The distribution function of S ,  is independent of n  and B = E [ F ( S , )  F* (S , ) ]  

exists. 
Equation 3 together with these three assumptions lead to the following four equa- 

tions involving expected responses and response ratios: 
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We discuss each separately. Equation 4 is the expression for the ordinary magnitude 
function. It exhibits two important features. First, except when C =  1/B, this expec- 
tation drifts over trials. The existence of drift was shown clearly by Ward (1973) and 
by Green & Luce (1974) in their data, and it has been noted informally by others; its 
existence is one of the reasons that many experimenters are hesitant about collecting 
repeated responses from individual observers. One might anticipate that a well- 
practiced observer would learn to choose C so as to eliminate the drift, but the process 
is not completed even after thousands of trials. Obviously, the existence of drift in this 
model, and in some data, make it difficult to study the distribution of responses to a 
given signal since the estimated distribution is a mix of the actual distribution and the 
drift. Second, aside from the drift, the magnitude function is proportional to the 
mean, F(s) ,  of the X(s)  representation. 

Equation 5 is a convenient form in which to study sequential effects. We see that 
they exist if and only if F(s)  F* ( s )  depends on s ;  moreover they are assimilative - the 
response on trial n tends toward the signal on trial n - as in the data (see Figure I 
below) if and only if F(s)  F* ( s )  is an increasing function of s. 

Equation 6 is the natural response ratio to study. A desirable feature of this function 
is that it exhibits no drift; an undesirable one is that the right side depends on two 
different functions of s  and s'. The only case in which they would be the same is if 
F* ( s t )  = D/F(sf ) ;  however, this is equivalent to there being no sequential dependencies, 
which appears to be empirically false (see the data in the next section, but also the 
interpretation in the following one). 

We would prefer to study a functionin which F(s)/F(sf)  appeared on the right, which 
is the reason for the peculiar function in Equation 7. Note that to the extent that F 
is a power function of signal intensity, Equation 7 depends only on the ratio of signal 
intensities, not on their individual values. 

In the context of ratio estimation, Equation 6 has received some attention. Writing 
R(s,  s')  for the ratio judgment when s  and sf  are presented, the analogue to Equation 1 
seems appropriate, 

R (s,  s ' )  = CX (s)/X (s')  , 

also 

E [ R  (s,  s f ) ]  = CF(s)lf* (s')  , 
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where 
f *(sl) = l /F*(sl) .  

Comrey (1950) (see Torgerson, 1958, pp. 104-1 12) suggest the special case C =  1 and 
f * = F. Sjoberg (1962), using data from three papers, compared this with C #  1 and 
f * = Fand with the general result. He found the first two cases inadequate, as we would 
expect if there are sequential dependencies. These ideas, along with statistical pro- 
cedures and further data, are reported in Sjoberg (1971). Svenson and Akesson 
(1966a, b; 1967) studied empirically the function 

E [R  (s, st)] E [R (i, s)] = c2 F ($1 f * ($1 
F (sf) f * (sf) 

Some Data 

According to Equation 5, a good way to estimate F(sf)  F*(sl), and so to study se- 
quential effects, is to average E(Rn I S n = s  & S,-, =sf)/E(Rn I Sn=s)  over s. These 
functions for the data reported by Cross (1973) and Ward (1973), both averaged over 
observers, and for the six observers studied by Green & Luce (1974) are shown in 
Figure 1. In each case, the sequential effect is assimilative. 

The six observers of Green & Luce and the group data of Cross are all remarkably 
similar, with relatively slight sequential effects. Ward's group data exhibit a much 
more pronounced effect. 

The model Cross fitted to his data is, in essence, ours with 

F(s) -- I ( S ) ~ - ~  
F* (s) -- 

and so 
F(s) F* (s) -- I ( s ) ~  , 

which means the plotted functions should be straight lines with slope b. In his case 
6=0.027; the other estimated slopes are given in the figure caption. Whether the data 
are best described by power functions is obscure; they do not give a bad fit, but many 
other functions would be at least equally good. 

Since in our data FF* is nearly a constant, it should not matter greatly whether we 
plot Equation 6 or 7. They, together with the ordinary magnitude function, all nor- 
malized to agree at the left-most point, are shown in Figure 2, and as we anticipated 
there is little difference between the ratio functions. Note, however, that for observers 
2,4, and 5 the ratio functions differ by as much as 10 dB from the magnitude functions 
and are considerably closer to power functions. We do not know if this is due to drift 
or something else. 

As we noted earlier, to the extent that these functions appear to be power functions, 
the quantity of Equation 7 should depend only on the signal ratio, not the individual 
values. Let H(s; d )  denote the left side of Equation 7, where d=I(s)/I(sl), and let 
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Fig. I .  Estimates of F(s') F*(sl)/B using Equation 6 from group data reported by Cross (1973) and 
Ward (1973) and from individual data reported by Green & Luce (1974). Reading from top to bottom, 
the exponents of power functions to fit these data are: 0.030,0.028,0.019, 0.019, 0.027, 0.022, 0.028, 

and 0.088. (This is Figure 1 of Luce & Green, 1974.) 
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H ( -  ; d )  denote the average of this over all s. We have plotted the average of H ( s ;  d ) /  
H ( .  ; d )  over all signal ratios d  versus I ( s )  in Figure 3. If the model is correct and F  
is a power function, then this function should be equal to 1. Although there is a slight 
tendency for it to increase with I ( s )  over most of the range and a distinct increase at 
the most intense signal, which may be due to  deviations of F  from a power function, 
to a good first approximation, H ( s ;  d )  depends on d  and not on s. 

Even for our well-practiced observers, there is evidence that response drift occurred, 
and so it seems advisable to study the distribution of response ratios rather than of the 
responses themselves. Various studies (Luce & Mo, 1963; Schneider & Lane, 1963) 
indicate that the standard deviation of magnitude estimates is roughly proportional 
to the mean, so we elected to plot that ratio for Rn/Rn- ,  as a function of I ( s ) / I ( s l ) .  
This is shown in Figure 4. It is evident that a / m  grows rapidly at first and tapers off 
to a constant at separations of 20 dB and more. 

In some cases, a / m  may decrease again for large intensity ratios. Inspection of the 
distribution, together with the anomaly in Figure 3 for the 90 dB signal, suggests that 
the observers may have absolutely identified this extreme case. In contrast, we suspect 
that the very small variability in the ratio when the signals are close is an important 
result. In particular, as we discuss in Green & Luce (1974), it may relate to some of the 
perplexing range effects in absolute identification experiments. 

Timing Model and Selective Attention 

Luce & Green (1972) proposed a timing model of the following character. When 
signals is presented, it activates on each of Jchannels (not necessarily neural fibers, but 
some abstraction from them) independent Poisson processes of common intensity 
p  ( s ) .  The intensity function is assumed to be an increasing function of signal intensity 
I ( s )  and, indeed, various data suggest that it is approximately a power function of I. 
Whenever the observer is to answer a question about I ( s ) ,  he is assumed to take some 
sample of these Poisson processes from which he estimates p  ( s ) .  In the timing model, 
the sample size is assumed to be, k  ( s ) =  J ( s )  u ( s ) ,  where J ( s )  is the number of channels 
excited and u  ( s )  is the sample size from an individual channel. The sum T  over channels 
of the times from the first to the (K+ 1) st pulse on each channel has a gamma dis- 
tribution of intensity p  ( s )  and order k  ( s ) .  Since the mean is k ( ~ ) / ~  (s ) ,  this suggests 
using the representation X ( s ) = k ( s ) / T ( s ) .  Assuming that, it is easy to show that 

F ( s )  = P ( s )  k  (s)l(k ($1  - 1) 

F* ( s )  = 1 Ip (A) , 
and so 

F ( s )  F*(s )  = k ( s ) / ( k ( s )  - 1). 

This implies that if the sample size k ( s )  is a constant, then the timing model exhibits 
no sequential dependencies. (Essentially the same result is true for the counting model; 
see Luce & Green, 1974.) 
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It is also not difficult to show that the ratio of two such RVs, one with sample size k  
and the other with k*, and therefore the ratio of responses on successive trials, is 
distributed according to the Beta distribution of the second kind with parameters k  
and k*. From this it is almost immediate that 

which means that if the sample sizes are constant, then alrn is a constant for the timing 
model. 

Both of thesestatements are clearly contradicted by the data, and so either the timing 
model is wrong or the sample sizes are not constant. If they are not constant, it is 
evident that no simple postulate involving a change just with signal intensity is ade- 
quate to account for both of these functions. Some rather more subtle idea is needed. 

One that appears to account sensibly for these data is the existence of a selective 
attention mechanism that is the intensity analogue of critical-frequency bands. 
Specifically, let us suppose that in terms of pulse rates of Poisson processes, there is a 
band of fixed width in which most attention can be focused in the sense of collecting 
a large sample, and for all rates outside that band, a considerably smaller sample is 
collected. For simplicity, we assume k  ( s )  = k* ( s )  in bothcases, and that the two sample 
sizes are K  and KO, where KO < K. Second, we assume that the observer is free to center 
the band where he wishes in advance of the signal presentation; for this experiment, in 
particular, he is assumed to center it around the estimated rate of the preceding signal. 

Consider first the F ( s )  F * ( s )  function. For any pair of trials it is either equal to  
K / ( K -  1) or Ko/(Ko - l), where the former is smaller than the latter. Which value it has 
depends on whether or not the preceding signal, s', was in the region of greater atten- 
tion. We argue that this is more probable for low intensities than for high, and hence 
FF* should grow with intensity The reason is that the band is of constant width in 
pulse rate, which in turn is roughly a power function of signal intensity; hence, the 
band width in dB decreases with intensity.3 Since the signals were equally probable and 
equally spaced in dB, it follows that it is somewhat more likely for a weak than for a 
strong signal to lie in the attention span of a randomly presented signal. 

Second, consider the a/rn function. Let P ( s l )  denote the probability that the pre- 
ceding signal s' lay in the region of greater attention. If the current signal, s,  is close 
to s', then with high probability it will lie in the region of greater attention and so the 
estimated ( ~ / r n ) ~  is simply a probability mix of two terms: 

To be more formal, suppose the upper and lower intensities of the band of greater attention are 
ZTl and 11, that p = nlf l ,  and pa =pr $ 6' where 6' is a constant. Then, 

log I , , IZ~ = (118 )  10g(1 + e l p 1 )  . 
If, for example, a = 0.1 ,  8 = 0 .3 ,  and 0 - 50,  the ratio of bandwidths in dB at 11 = l o 3  and It = l o 8  is 
3.8 .  
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On the other hand, if the current signal lies sufficiently far from s' so that it is outside 
the region of greater attention, the estimated ( a / m 2 )  is the mix: 

It is easy to see that for all P ( s l )  the latter expression is greater than the former. Were 
the band to be rigidly centered on the true rate of the preceding signal, then for any 
fixed value of st  there would be a discontinuous shift in a/m at the boundary of the 
band. Since, however, the centering is assumed to be on the estimated rate of the pre- 
ceding signal, which is variable, the transition is smoothed. In addition, the band width 
in dB varies with s', which also smooths the observed transition. 

Third, consider the expected ratio of responses which, by Equation 6 ,  is proportional 

Thus, the factor multiplying p ( s ) / p ( s l )  is less when s  is near s' than when they are 
widely separated. This means that if p  actually is a power function of intensity, then 
the attention model implies that the observed curve in log-log coordinates should be 
concave up, not a straight line; this appears to be the case (see Figure 2). 

Discussion 

Let us make explicit where our path has led us. We began with a very simple response 
ratio hypothesis, embodied in Equation 3, and its predictions, formulated as Equa- 
tions 4-7. Looking at the data as suggested by this model uncovered evidence of weak 
sequential effects and of a marked reduction in the variability of the response ratio 
when the separation between successive signals is small (< 20 dB). Other work led us 
to examine a special case of the response ratio hypothesis suggested by the neural 
timing model. Neither the version with a constant sample size nor one with a sample 
size that depends just on the signal presented were consistent with these two empirical 
functions. For this model to hold, the sample size must depend on both the present 
and preceding signal. We suggested a two-state attention model in which a large sample 
is taken if the present signal lies within a band centered about the estimated rate of the 
preceding one and a smaller one is taken otherwise. This seemed adequate to explain 
these data. Experiments need to be designed to study this hypothesis more directly. 

It is important to realize that if this line of argument is correct, then the nature of the 
sequential dependencies rests on the relation between the spacing of signals and that 
of the attention band. It is assimilative when the signals are equally spaced in dB be- 
cause the band in dB narrows as intensity is increased. Were we to space the signals so 
that their density increases sufficiently with intensity, this model predicts an ultimate 
reversal in the nature of the dependencies. 

To generalize the attention-timing model, one must reformulate the response ratio 
hypothesis. In particular, a pair of RVs X(s) ,  X* ( s )  is observed when s is close to s f  
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and another pair X, (s), X: (s) when s is far from s'. This means that Rn/Rn-, is one of 
four possible ratios. The timing model has the special simplifying feature that 
E(~/x*)=E(~/x:). This general model has not yet been studied. 
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